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Abstract
In this paper, we study catalysis of entanglement transformations for n-level
pure entangled states. We propose an algorithm of finding the required
catalystic entanglement. We introduce several examples by way of
demonstration. We evaluate the lower and upper bound of the required
inequalities for deciding whether there are m-level appropriate catalyst states
for entanglement transformations for two n-level pure entangled states.

PACS number: 03.67.Hk

Entanglement is the most distinguishing feature of quantum mechanics from classical
mechanics. As pointed out by Schrödinger, the whole of a pure entangled state is a definite
state, but the parts taken individually are not [1]. In the last decade, quantum information
has been extensively explored. Studies of quantum entanglement have received considerable
attention in recent years, with various applications in quantum cryptography [2], teleportation
[3] and superdense coding [4]. It is well known that, using entanglement, we can accomplish
many tasks that are impossible in classical information. Researchers now treat entanglement
as a physical resource in quantum information. In addition, entanglement can be measured,
mixed, distilled, diluted and transformed [5–8]. In this paper, we study the entanglement
transformation between bipartite pure entangled states. To begin with, suppose that distant
Alice and Bob share a bipartite system |ψ1〉 ∈ H = HA ⊗ HB that comprises qubits A and
B. As required in the following discussion, the dimensions of the Hilbert spaces HA and HB

are mn. These special state vectors |ψ1〉, |ψ2〉, |α〉 and |β〉 can be spanned in the respective
Hilbert subspaces. According to Schmidt decomposition, there exists an orthonormal basis
{|i〉A} in HA and {|i〉B} in HB , such that

|ψ1〉 =
n∑

i=1

√
xi |i〉A ⊗ |i〉B, (1)
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where x1, . . . , xn are Schmidt coefficients such that x1 � · · · � xn � 0 = xj , n < j � mn,
and

∑n
i=1 xi = 1 [9]. In the following discussion, any bipartite system is expressed in the

Schmidt decomposed form. Now Alice and Bob want to convert the entangled state |ψ1〉 into
the entangled state |ψ2〉 with certainty under local operations and classical communication
(LOCC), where

|ψ2〉 =
n∑

i=1

√
yi |i〉A ⊗ |i〉B, (2)

and the ordered Schmidt coefficients y1 � · · · � yn � 0 = yj , n < j � mn, and
∑n

i=1 yi = 1.
The necessary and sufficient conditions for the local transformation of pure bipartite entangled
states with certainty under LOCC were presented by Nielsen [11].

Nielsen’s theorem. A transformation T that converts |ψ1〉 to |ψ2〉 with certainty can be realized
using LOCC iff {xi} can be majorized by {yi}, that is, iff for all p, 1 � p � n,

p∑
i=1

xi �
p∑

i=1

yi. (3)

We denote |ψ1〉 ⇒ |ψ2〉 if we can convert |ψ1〉 to |ψ2〉 with certainty under LOCC.
According to Nielsen’s theorem, it is likely that neither of |ψ1〉 and |ψ2〉 can convert to each
other with certainty under LOCC, which is denoted by |ψ1〉 � |ψ2〉. Jonathan and Plenio [8]
considered entanglement-assisted local transformation as follows. Suppose that Alice and Bob
can be temporarily supplied with another catalytic entangled state |α〉 ∈ H′ = H′

A ⊗ H′
B that

comprises qubits A′ and B ′. In general, |α〉 = ∑m
i=1

√
αi |i〉A′ ⊗ |i〉B ′ . Note that the dimension

of each Hilbert space, H′
A and H′

B , is also mn. In addition, α1 � · · · � αnm � 0 = αj ,
m < j � mn, and

∑m
i=1 αi = 1. Then, as Nielsen’s theorem implies, they can perform

|ψ1〉 ⊗ |α〉 ⇒ |ψ2〉 ⊗ |α〉 (4)

with certainty using LOCC [8]. Alice and Bob make use of the intermediate entanglement
|α〉 without destroying or altering it. Here the entangled state |α〉 can be regarded as playing
the catalyst role in a chemical reaction. Here we describe how to perform an entanglement-
assisted local transformation based on Nielsen’s theorem. Note that Alice and Bob possess
the qubit pairs (A,A′) and (B,B ′), respectively. At first, Alice and Bob each perform the
conditional operation O1,

|s〉source|t〉target → |s〉|(s − 1)m + t〉 if s � n and t � m(n − s + 1),

|s〉source|t〉target → |s〉|(s − 1)m + t − mn)〉 if s � n and m(n − s + 1) < t � mn (5)

|s〉source|t〉target → |s〉|t〉 otherwise,

where the source and target qubit pairs are (A,B) and (A′, B ′), respectively. Then Alice and
Bob each perform the conditional operation O2,

|s〉source|t〉target → |s〉
∣∣∣t + s −

⌈ s

m

⌉〉
if t � mn − s +

⌈ s

m

⌉
,

(6)
|s〉source|t〉target → |s〉

∣∣∣t + s −
⌈ s

m

⌉
− mn

〉
if mn − s +

⌈ s

m

⌉
< t � mn,

where the source and target qubit pairs are (A′, B ′) and (A,B), respectively. As a result,
|ψr〉 ⊗ |α〉 can become

mn∑
i=1

√
wf (i)

√
αg(i)|i〉Alice ⊗ |i〉Bob, (7)
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where |i〉Alice = |ii〉AA′ , |i〉Bob = |ii〉BB ′ , and (r, w) can be (1, x) or (2, y), respectively. In
addition,

f (i) = i − (i mod m) − mδ0,i mod m

m
+ 1, (8)

g(i) = i mod m + mδ0,i modm, (9)

where δu,v is equal to 1 if u = v and 0 otherwise. As a result, according to Nielsen’s theorem,
we can identify whether |ψ1〉⊗|α〉 can be converted into |ψ2〉⊗|α〉 with certainty using LOCC.
We call such transformation in equation (4) standard entanglement catalyzed transformation
or standard entanglement catalysis. In addition, Feng et al considered mutual catalysis of
entanglement transformations for pure entangled states. In other words, they considered the
following entanglement-assisted local transformation,

|ψ1〉 ⊗ |α〉 ⇒ |ψ2〉 ⊗ |β〉, (10)

where |β〉 is a particular entangled state and |α〉 � |β〉. Morikoshi explored the recovery of
entanglement lost in entanglement manipulation [13].

In this paper, we focus on how to find the useful entanglement catalysts |α〉 (and |β〉). As
a starting point, we consider the ordered Schmidt coefficients of |ψi〉 ⊗ |α〉 (and |ψ2〉 ⊗ |β〉).
(The tensor product notation ‘⊗’ is ignored in the rest of the paper.) We assume the Schmidt
number of two-partite state |α〉 ∈ H′ = H′

A ⊗ H′
B to be 2. That is,

|α〉 = √
α1|1〉|1〉 +

√
α2|2〉|2〉, (11)

where α1 � α2 � 0 and α1 + α2 = 1. For the simplest case, let n be 2. Obviously, there are
two possible ‘paths’ for non-increasing ordered Schmidt coefficients of |ψi〉|α〉: either

z1α1 � z1α2 � z2α1 � z2α2, (12)

or

z1α1 � z2α1 � z1α2 � z2α2, (13)

where zi can be xi or yi . Here we define a path in which the non-increasing ordered Schmidt
coefficients are arranged from left to right. The hyphen can be regarded as ‘�’. Note that
equations (12) and (13) are two logically possible paths. Only one path is legal. To decide
which path is legal as the real non-increasing ordered Schmidt coefficients of |ψ1〉|α〉, we
have to compare α2

α1
and z2

z1
. If α2

α1
� z2

z1

(
α2
α1

� z2
z1

)
, the path in equation (12) ((13)) is legal.

Figure 1 represents all possible paths in the n = 4 case. To find the respective legal paths in
|ψ1〉|α〉 and |ψ2〉|α〉, we have to consider the order of all xj

xi
, yj

yi
(i < j) and α2

α1
values in the

interval [0, 1]. In general, if |α〉 is some entangled state with Schmidt number m, we have to
consider the order of all xj

xi
,

yj

yi
and some necessary αj

αi
(i < j).

Now we consider how to find a useful catalyst entanglement. Here |α〉 is an entangled
state with Schmidt number 2. Equivalently, we can rephrase our problem as follows: With
what ratio α2

α1
can we convert |ψ1〉 ⊗ |α〉 to |ψ2〉 ⊗ |α〉 with certainty under LOCC? First, we

consider the value of α2
α1

in the interval [0, 1], which is divided into subintervals with possible

endpoints 0, 1, xj

xi
and yj

yi
(i < j). For any subinterval [a, b], the endpoint a can be 0, xj

xi
or

yj

yi
(i < j), and the endpoint b can be 1, xj

xi
or yj

yi
(i < j). As a consequence, neither xj

xi
nor

yj

yi
(i < j) can be in the open subinterval (a, b). Then we investigate whether there is a useful

region of α2
α1

, in a subinterval, to convert |ψ1〉 ⊗ |α〉 to |ψ2〉 ⊗ |α〉 with certainty under LOCC.
The advantage is that, for a subinterval, the ordered Schmidt coefficients of |ψ1〉 ⊗ |α〉 and
|ψ2〉 ⊗ |α〉 are exactly determined, respectively. Obviously, there are n2 − n + 1 subintervals
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Figure 1. All logically possible paths of ordered Schmidt coefficients of |ψ1〉|α〉, where the
Schmidt number of |α〉 is 2 and that of |ψ1〉 is 4.

if all xj

xi
and yj

yi
(i < j) are different. Therefore, we have to consider n2 − n + 1 cases. Here

we assume that |ψ1〉 ⊗ |α〉 ⇒ |ψ2〉 ⊗ |α〉, where α2
α1

∈[ zj

zi
,

zj ′
zi′

]
, z and z′ can be x or y and

i � j and i ′ � j ′. Hence the order of the Schmidt coefficients of |ψ1〉 ⊗ |α〉 and |ψ2〉 ⊗ |α〉
is exactly determined. Then we consider the majorization conditions in equation (3). That is,
we consider all inequalities similar in equation (3) in terms of α2

α1
. As a result, we can derive

many inequalities, such as α2
α1

� s1, . . . ,
α2
α1

� sa and α2
α1

� l1, . . . ,
α2
α1

� lb, where s1, . . . , sa

and l1, . . . , lb are functions of all xi and yi , which are already known. If

max

{
l1, . . . , lb,

zj

zi

}
= B � A = min

{
s1, . . . , sa,

zj ′

zi ′

}
, (14)

we have a useful catalyst region B � α2
α1

� A. In this way, we investigate all possible
subintervals to find out all possible catalyst regions. We consider the following example.

Example 1. Suppose there are two entangled states

|ψ1〉 =
√

0.4|1〉|1〉 +
√

0.4|2〉|2〉 +
√

0.1|3〉|3〉 +
√

0.1|4〉|4〉 (15)

and

|ψ2〉 =
√

0.5|1〉|1〉 +
√

0.25|2〉|2〉 +
√

0.25|3〉|3〉. (16)

Find the appropriate catalyst state |α〉 [8].

(x1, x2, x3, x4) and (y1, y2, y3, y4 ) are (0.4, 0.4, 0.1, 0.1) and (0.5, 0.25, 0.25, 0),
respectively. Obviously, we have

x1 � y1 (17)

and

x1 + x2 � y1 + y2. (18)

As a result, |ψ1〉 � |ψ2〉. Now we consider the appropriate catalyst entanglement. Before
exploring all inequalities, we can make some observations. For example, the second
largest Schmidt coefficients of |ψ1〉|α〉 and |ψ2〉|α〉 cannot be x2α1 and y2α1 simultaneously.
Otherwise, |ψ1〉 ⇒ |ψ2〉 cannot be achieved due to equation (17). Similarly, it is easy to verify
that the fourth largest Schmidt coefficients of |ψ1〉|α〉 and |ψ2〉|α〉 cannot be x2α2 and y2α2

simultaneously due to equation (18). Therefore, some possible paths in figure 1 are excluded.
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In addition, as previously mentioned, we divide the interval [0, 1] into subintervals, 1, 2, 3,
which are [0.5, 1], [0.25, 0.5] and [0, 0.25], respectively. If α2

α1
falls in either the subinterval

2 or 3, the second largest Schmidt coefficients of |ψ1〉|α〉 and |ψ2〉|α〉 are x2α1 and y2α1,
respectively, which violates equation (17). As a result α2

α1
can only be in subinterval 1. That

is, 0.5 � α2
α1

� 1. The ordered Schmidt coefficients of |ψ1〉|α〉 and |ψ2〉|α〉 are

x1α1 � x2α1 � x1α2 � x2α2 � x3α1 � x4α1 � x3α2 � x4α2 (19)

and

y1α1 � y1α2 � y2α1 � y3α1 � y2α2 � y3α2 (y4 = 0),

respectively. With straight algebra on equation (3), we have

3

5
� α2

α1
� 2

3
. (20)

In Jonathan and Plenio’s paper, only the solution α2
α1

= 2
3 is considered. In our consideration, we

can find all appropriate catalyst α2
α1

ratios. Moreover, we directly determine the corresponding
ordered Schmidt coefficients.

Next we consider another example of mutual catalysis entanglement.

Example 2. Suppose there are two entangled states

|ψ1〉 =
√

0.4|1〉|1〉 +
√

0.36|2〉|2〉 +
√

0.14|3〉|3〉 +
√

0.1|4〉|4〉 (21)

and

|ψ2〉 =
√

0.5|1〉|1〉 +
√

0.25|2〉|2〉 +
√

0.25|3〉|3〉. (22)

Find the useful entanglement states |α〉 and |β〉, such that |α〉 � |β〉 but |ψ1〉|α〉 ⇒ |ψ2〉|β〉
[12].

Here |α〉 and |β〉 are entangled states with Schmidt number 2. That is, |α〉 =√
α1|55〉 +

√
α2|66〉 and |β〉 = √

β1|55〉 +
√

β2|66〉. We assume that α1 > α2 and β1 > β2.
Since |α〉 � |β〉, we have α1 > β1 > 0.5. In addition, we can write down the necessary
condition for |ψ1〉|α〉 ⇒ |ψ2〉|β〉

x1α1 � y1β1. (23)

That is, 0.8α1 � β1. As a result, we set

β1 = pα1, 0.8 � p < 1. (24)

Then we consider the majorization conditions, which lead to inequalities in terms of p and
α2
α1

. Similarly, we can divide the [0, 1] into eight subintervals. Suppose that the second largest
Schmidt coefficients of |ψ1〉|α〉 and |ψ2〉|α〉 are x2α1 and y2β1, respectively, The majorization
condition requires that

x1α1 + x2α1 � y1β1 + y2β1. (25)

As a result, we have

1 <
x1 + x2

y1 + y2
� p, (26)

which contradicts equation (25). As a result, there are three possible conditions for
(

α2
α1

,
β2

β1

)
.

With straightforward algebra, solutions for appropriate α1 and p are

13

25α1
� p < 1,

13

25
< α1 � 23

36
, (27)
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where the corresponding paths of |ψ1〉|α〉 can be

x1α1 � x1α2 � x2α1 � x2α2 � x3α1 � x3α2 � x4α1 � x4α2, (28)

x1α1 � x2α1 � x1α2 � x2α2 � x3α1 � x3α2 � x4α1 � x4α2, (29)

or

x1α1 � x2α1 � x1α2 � x2α2 � x3α1 � x4α1 � x3α2 � x4α2. (30)

The other solution is
36

25
− 2

5α1
� p < 1,

23

36
� α1 <

50

76
, (31)

where the corresponding path of |ψ1〉|α〉 is the same as 30. For the above solutions, the
corresponding path of |ψ2〉|β〉 is

y1β1 � y1β2 � y2β1 � y3β1 � y2β2 � x3β2. (32)

In the Feng et al paper, only the solution (α1, α2, β1, β2) = (0.6, 0.4, 0.55, 0.45) is considered.
However, it is not always possible to perform mutual entanglement catalysis using

entangled states as catalysts with Schmidt number 2. Feng et al considered |ψ1〉 and |ψ2〉 to
be √

0.33|11〉 +
√

0.32|22〉 +
√

0.3|33〉 +
√

0.05|44〉, (33)

and √
0.6|11〉 +

√
0.2|22〉 +

√
0.14|33〉 +

√
0.06|44〉, (34)

respectively [12]. With lengthy algebra, we verify that there are no entangled states |α〉 and
|β〉 with Schmidt number 2 for mutual catalysis of entanglement transformation even if the
necessary condition

β1 ln β1 + β2 ln β2 > α1 ln α1 + α2 ln α2, (35)

is satisfied [12].
In general, we can determine whether there are entangled states |α〉 (and |β〉) with Schmidt

number m for entangled states |ψ1〉 and |ψ2〉 with Schmidt number n in a similar way. We
describe our algorithm as follows. (1) As previously mentioned, we divide the interval [0, 1]
into subintervals. As a result, none of xj

xi
and yj

yi
(i < j) falls into any open subinterval. (2) Find

the legal paths of |ψ1〉|α〉 and |ψ2〉|α〉 (|ψ2〉|β〉), respectively. (3) Consider all inequalities for
the majorization. Here we approximate the lower and upper bounds of the total inequalities
to be considered. To search appropriate catalyst entangled states with Schmidt number m, at
least we have to consider all independent ratios αi+1

αi
(and βi+1

βi
), i = 1, . . . , m − 1. Each ratio

can fall into any subinterval. Here we consider standard entanglement catalysis. Suppose that
all ratios xj

xi
and yj

yi
(i < j) are different and, therefore, there are n(n − 1) + 1 subintervals. As

a result, there are at least (n2 −n + 1)m−1 possible cases for the ( α2
α1

, α3
α2

, . . . , αn

αn−1
) distribution.

For any αi+1
αi

in some subinterval, two inequalities should be considered. In addition, we have
to consider (nm − 1) majorization inequalities. Therefore, for each case we have to consider
n(m+ 2)−1 inequalities at least. For large n and m, at least we have to consider about n2m−1m

inequalities to decide whether there are appropriate catalyst states with Schmidt number m
for standard catalysis of entanglement transformations for two pure entangled states. On the
other hand, even the

(
α2
α1

, α3
α2

, . . . , αn

αn−1

)
distribution is known, it is not sufficient to decide the

legal paths. In fact, there are 1
2m(m − 1)

αj

αi
(i < j) ratios and only (m − 1) of these ratios are

independent. To approximate the upper bound, we assume that all αj

αi
are independent. As a
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Figure 2. The slash area shows all possible (x2, x1) of |ψ1〉 in equation (37) for the entanglement
catalysis |ψ1〉|ψ2〉 → |ψ2〉|ψ2〉. Here L1 : x1 = 0.36, L2 : 3x1 + x1 = 1.24L3 : x1 = x2 and
L4 : 2x1 + x2 = 0.86.

consequence, it is easy to verify that, at most, we need to consider about nm2−m+1m inequalities
to decide whether there are appropriate catalyst states with Schmidt number m. Similarly,
we need at least (at most) n4m−3m (n2m(m−1)+1m) to decide whether there are appropriate
catalyst states with Schmidt number m for mutual catalysis of entanglement transformations
for two pure entangled states when n and m become large. For m = 2, we may need about n3

inequalities to find appropriate catalyst states.
Finally, we consider the following example.

Example 3. Suppose

|ψ2〉 =
√

0.48|1〉|1〉 +
√

0.24|2〉|2〉 +
√

0.14|3〉|3〉 +
√

0.14|4〉|4〉 (36)

(y1 = 0.48, y2 = 0.24, y3 = y4 = 0.14). Find the useful entanglement states |ψ1〉,
|ψ1〉 = √

x1|1〉|1〉 +
√

x1|2〉|2〉 +
√

x2|3〉|3〉 +
√

x3|4〉|4〉 +
√

x3|5〉|5〉 (37)(
x3 = 1−2x1−x2

2

)
, such that

|ψ1〉 � |ψ2〉 (38)

but

|ψ1〉|ψ2〉 → |ψ2〉|ψ2〉. (39)

[14].

Jensen and Schack introduced this example as quantum authentication and authenticated
quantum key distribution [14]. Here we just focus on all solutions of |ψ1〉 in equation (37). In
this example, it is |ψ1〉 rather than the catalyst entanglement that is unknown. According to
equations (38) and (39), it is easy to verify that (i) x1 � y1+y2

2 and (ii) 2x1 + x2 � y1 + y2 + y3.
With straight algebra, we can find all possible x1 and x2, as shown in figure 2. In Jensen and
Schack’s paper, only the solution (x1, x2, x3) = (0.31, 0.30, 0.04) is considered.
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In conclusion, we demonstrate how to find catalyst entanglement with Schmidt number 2
for standard and mutual catalyses of entanglement transformations for pure entangled
states. We propose an algorithm to determine whether we can perform standard or mutual
entanglement catalysis using catalyst entanglement with Schmidt number m. The lower
and upper bounds of the required inequalities for solving such problems are evaluated. We
conjecture that there are no efficient criteria for deciding whether there are appropriate catalyst
states with Schmidt number m for standard or mutual catalyses of entanglement transformations
with Schmidt number n for two pure entangled states when n and m become large.
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